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We agree with Shafer et al. [1] that there is
a need for well-documented case studies
of the application of genomics in conser-
vation and management as well as
increased communication between aca-
demics and natural resource managers.
However, we challenge Shafer et al.’s [1]
relatively pessimistic assertion that ‘con-
servation genomics is far from seeing reg-
ular application’. Here we illustrate by
examples that conservation practitioners
utilize more genomic research than is
often apparent. In addition, we highlight
the work of nonacademic laboratories
[government and nongovernmental orga-
nizations (NGOs)], some of which are not
always well represented in peer-reviewed
literature. Finally, we suggest that
increased agency–academic collabora-
tion would enhance the application of
genomics to real-world conservation and
help conserve biodiversity.

There is substantial controversy and con-
fusion surrounding the definition of
‘genomics’ versus traditional genetic
approaches. Here we address this by
expanding Shafer et al.’s [1] definition
to include a broad- and narrow-sense
definition to better illuminate the different
ways that genomics contributes to con-
servation practice. We define broad-
sense conservation genomics as the
use of new genomic techniques and
genome-wide information to solve prob-
lems in conservation biology (as in Shafer
et al. [1] and Allendorf et al. [2]). Our
narrow-sense definition also requires
the use of approaches that are concep-
tually and quantitatively different from tra-
ditional genetics to answer questions
that would be impossible using genetic
data alone (e.g., detecting genome-wide
adaptation, use of transcriptomics, epi-
genetics, using annotated genomes).
This narrow-sense definition includes
using hundreds to thousands of mapped
or gene-targeted marker loci in combina-
tion with recent computational and con-
ceptual approaches such as mapping
runs of homozygosity, comparing neutral
versus adaptive patterns of population
structure or gene flow, and testing for
signals of selection to assess adaptation.

Narrow-sense genomic approaches have
been used for diverse conservation appli-
cations including identifying conservation
units, assessing gene flow, and detecting
local adaptation (Table S1 in the supple-
mentary material online). We agree with
Shafer et al. [1] and others [2] about the
general and serious concern of erroneous
identification of adaptive loci and their sub-
sequent use (or misuse) in conservation
practice. However, we remain cautiously
optimistic given the recent efforts to use
putatively adaptive loci to inform manage-
ment practices. For instance, genome-
wide scans using diversity array technol-
ogy (DArTseq) in gimlet trees (Eucalyptus
salubris) generated 16 122 neutral and
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putatively adaptive SNP markers used
to uncover distinctive molecular lineages
signaling adaptation to different environ-
ments. These genome-wide scans offered
enhanced precision otherwise unavailable
with traditional genetics or phenotypic
traits alone [3] (Table S1). Such novel
insights are important in seed choice for
the ecological restoration of gimlet trees, a
keystone species in the Great Western
Woodlands of Australia, in the wake of
wildfires [3].

In many broad-sense studies, next-gener-
ation sequencing (NGS) has enabled
the discovery of management-informative
markers that are subsequently screened in
populations of conservation concern. For
example, state management agencies in
Washington and Idaho, USA used NGS
to discover markers of introgression from
hatchery broodstock into wild populations
of salmonid fishes [4,5]. Other applications
of broad-sense conservation genomics
are evident (Table S1) and have been
enabled by recent NGS and SNP genotyp-
ing technologies [6] (http://biorxiv.org/
content/early/2015/10/11/028837). These
approaches allow genome-wide discovery
and genotyping of highly informative
markers, making cost-effective monitoring
feasible using relatively small marker sets
(e.g., 100–500 markers) [7].

Decreases in costs (e.g., sequencing,
library prep, bioinformatics) are sparking
the application of NGS to a broader set of
conservation questions and taxa where
funding is relatively more limited. In addi-
tion to the examples above, genomic data
are currently applied in conducting parent-
age analyses in Pacific lampreys (Lamp-
etra tridentata) and monitoring for disease
in Tasmanian devils (Sarcophilus harrisii)
[8,9] and fish (Table S1). Power analyses
and cost-savings comparisons of using
SNPs versus microsatellite markers in
conservation genomics would be of great
benefit, but such analysis is beyond the
scope of this letter. However, using geno-
mic approaches has been shown to
provide more statistical power than
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microsatellites and cost less for genotyp-
ing and are as low as 1% of the cost of
traditional Sanger sequencing for marker
discovery [3,6,7,10] (Table S1).

We have included multiple case studies
from salmonids because these species
are of great conservation concern due to
their ecological, commercial, and cultural
importance in many Northern Pacific Rim
river systems. For example, �30% or
more of salmonid populations in the
Columbia River Basin (USA–Canada)
have been extirpated and many remain-
ing populations are listed as endangered
or threatened under the Endangered
Species Act (ESA) or the Species at Risk
Act in Canada because of, for example,
over-harvesting, habitat degradation,
pollution, and hydrological dams [11].
Therefore, more money and time is being
spent on these species than other taxa
due to their multiple conservation con-
cerns (e.g., climate change, hybridiza-
tion, over-harvesting). There are �12
nonacademic laboratories (e.g., federal,
tribal, NGO, state agencies) using geno-
mic data to work mostly or exclusively on
salmonids in the Pacific Northwest of
North America. Shafer et al. [1] insuffi-
ciently acknowledged one of the most
significant contributions of genomics to
conservation by not fully highlighting the
work of these laboratories, particularly
the Alaska Department of Fish and
Game (ADFG), a leader in SNP and
NGS tool development and application.
ADFG genotypes approximately 100 000
fish annually for management using
broad-sense conservation genomic
approaches [12]. Such approaches are
now feasible and being conducted in
many other species thanks to declining
costs of genomics, as mentioned above
(Table S1).

We highlight recent applications of geno-
mics in real-world management where
some are published, but many similar
studies are not published or widely dis-
seminated. Some nonacademic laborato-
ries have relatively limited incentive to
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publish or are delayed due to urgent dead-
lines reinforced by political, legislative, or
legal constraints. For example, some
agency laboratories produce reports or
declarations used in litigation or the plan-
ning of harvest regulations or introduc-
tions (e.g., hatchery fish management
plans), which can delay scientific publica-
tion. Nonacademics could potentially pub-
lish more by collaborating with academic
groups who have strong incentives to
publish (e.g., to ‘publish or perish’). Aca-
demics could in turn achieve greater con-
servation impact by working closely with
practitioners who can provide benefits
such as large sample and data collections,
funding and field staff, collection permits,
and high-throughput, cutting-edge geno-
mics platforms.

While research and publications from
some nonacademic laboratories are
often underappreciated or delayed, they
can help the conservation biology com-
munity to understand the extent and
feasibility of applying genomics to con-
servation. We hope by highlighting case
studies we will expand discussions and
applications of genomic techniques in
conservation and encourage the closing
of gaps between nonacademic laborato-
ries and academia.
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The letter by Garner et al. [1] continued an
important discussion regarding the role
genomics might play in conservation biol-
ogy. In general, we do not see a dichotomy
between our point of view [2] and that put
forth by Garner et al. [1]. At the heart of the
issue is how to define an actual impact of
genomics on applied conservation and find
suitable ways to remove existing barriers
limiting the use of genomics for managing
wild populations. The promised gains of
identifying adaptive loci and the genes
underlying phenotypes [3,4] have in most
systems not yet been realized and recent
empirical work further highlights the chal-
lenges [5,6]. Thus, our take-home message
boiled down to the application of genomics
in wild populations being at an early devel-
opmental stage that is far from straightfor-
ward and far from regularly applied [2].

Garner et al. [1] extended the list of exam-
ples where genomics has aided the con-
servation and management of wild
species. It is promising to see that exam-
ples are beginning to emerge and we are
pleased that the authors repeated the call
for increased agency–academic collabo-
ration to enhance the application of geno-
mics to real-world conservation issues.
However, the list of case studies provided
(Table S1 in [1]) underscores the absence
of genomic work effectively impacting the
conservation of a broad array of organ-
isms. The majority of examples involve
commercially important species in North
America, most often salmonid fish popu-
lations. Other featured examples, such as
the Tasmanian devil, are interesting geno-
mic studies, but the key conservation
strategy revolves around maintaining an
insurance (disease-free) population, with
genomic applications labeled as ongoing
research [7]. The lack of taxonomic and
geographic breadth and applied impact
on noncommercial entities suggest that
genomics has as yet not been as influential
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on conservation biology as initially prom-
ised [3] or implied [1]. Examples with high
commercial potential might in the best case
reflect a starting point for testing the appli-
cability of genomics more broadly.

Cooperation across the academic and
practical realms is an integral part of
applied conservation and increased atten-
tion in published literature does have a
beneficial corollary for conservation. In
that regard, we agree that reports from
the grey literature are valuable and play an
important role of disseminating valuable
information. However, we must not lose
sight of the main incentive of conservation
research, which is conserving biodiversity.
To truly bridge the conservation genomics
gap, alternative ways to measure impact
[8] and fund conservation science [2] need
to be considered. We therefore echo our
original call for the need to develop
research-to-application frameworks that
will accelerate the crossing of the conser-
vation genomics gap that is still present for
the very large number of species not com-
mercially harvested and with limited
resources.
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